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Abstract. We compare the phase space slicing and dipole subtraction methods in the computation of the
inclusive and differential next-to-leading order cross sections for heavy quark production in the simple
process γ∗ → QQ̄. For the phase space slicing method we study the effects of improvement terms that
remove restrictions on the slicing parameter smin. For the dipole method our comparison is a first check on
some of its counterterms involving massive quarks, derived recently. In our comparison we address issues
such as numerical accuracy and efficiency.

1 Introduction

Fully differential QCD cross sections are important ob-
servables for studies at high-energy colliders. By allow-
ing detector-specific acceptance cuts on phase space vari-
ables they eliminate the need for extrapolation into un-
measured, and often also poorly calculable regions, and
thereby improve theory–experiment comparisons. Reliable
theoretical predictions for such differential cross sections
require the inclusion of at least next-to-leading order
(NLO) QCD corrections. NLO calculations combine vir-
tual one-loop corrections with the real emission contribu-
tions from unresolved partons. These two parts are usually
computed separately and each is infrared divergent; only
their sum is infrared finite. NLO Monte-Carlo programs
incorporate both pieces and allow the simultaneous com-
putation of many differential cross sections for the partic-
ular reaction considered.
However, these programs require that infrared singu-

larities be eliminated before any numerical integration can
be done. There are essentially two types of methods to ef-
fect this cancellation. The phase space slicing (PSS)
method [1–4] is based on approximating the matrix ele-
ments and the phase space integration measure in bound-
ary regions of phase space so integration may be carried
out analytically. The subtraction method [5–7] is based
on adding and subtracting counter terms designed to ap-
proximate the real emission amplitudes in the phase space
boundary regions on the one hand, and to be integrable
with respect to the momentum of an unresolved parton.
For massless partons both methods are well developed

and have been widely used. A quite general formulation of
phase space slicing has been given in [8,9]. It was extended
to include massive quarks and identified hadrons in [10].

There exist two general formulations of the subtraction
method. One is the residue approach [11], the other the
dipole formalism [12]. Both can handle massless partons
and identified hadrons in the final and/or initial state.
The extension of the dipole method to handle massive
quarks, using dimensional regularization, has been given
recently in [13]. An extension to photon radiation off mas-
sive fermions, using small masses for infrared regulariza-
tion, was developed by Dittmaier in [14]. There are also
hybrid methods [15] that combine elements of the slicing
and subtraction methods such that both the resolved and
unresolved contributions are numerically small and can be
reliably integrated.
With general formulations of the phase space slicing

and dipole methods for massless and massive quarks now
available, it is interesting to compare their efficiency and
accuracy. In this paper we do this for (differential) “cross
sections” for heavy quark production in the process γ∗ →
QQ̄. This case is of course very simple but also generic for
more complicated processes. In the case of the NLO cross
section for tt̄H production [16,17] it was recently verified
[17] that the slicing method and a somewhat differently
phrased dipole method [18] agreed.
Our results using the dipole subtraction method repre-

sent the first numerical implementation of some of the sub-
traction terms computed in [13]. While the dipole method
is exact, the PSS method requires the introduction of a
theoretical resolution parameter smin, usually required to
be quite small. We include improvement terms in the PSS
method [19], and study their effect of removing restric-
tions on the size of the phase space slicing cut-off. This
is especially important for cross sections involving heavy
quark production, and allows for a free choice of slicing
parameter without reference to the heavy quark mass, a
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prerequisite for considering the high-energy or zero-mass
limit.
This paper is structured as follows. In Sect. 2 we com-

pute the fully differential cross section for γ∗ → QQ̄ us-
ing the PSS method, including the improvement terms. In
Sect. 3 we compute this cross section with the dipole sub-
traction method. In Sect. 4 we present a numerical com-
parison of the two methods, followed by our conclusions.

2 Phase space slicing

We consider the process

γ∗(q)→ Q(p1) + Q̄(p2), (1)

with p2
1 = p2

2 = m2. The NLO corrections involve virtual
corrections to (1) and the gluon bremsstrahlung reaction

γ∗(q)→ Q(p1) + Q̄(p2) + g(p3), (2)

with p2
3 = 0. We define the invariants

sij ≡ 2pi · pj , s̃ij ≡ (pi + pj)
2
. (3)

The final state phase space for the 3-parton contribution
is divided into “hard” and “soft” regions. The hard region,
in which all 3 final state particles in (1) are resolved, is de-
fined such that s13 > smin or s23 > smin. (In an appendix
we discuss this definition when more than one color struc-
ture is present.) The complementary region is soft. Let us
review the approximations involved in PSS, following [19].
The 3-parton contribution to the fully differential decay
can be written schematically as

dΓ3 = |M3|2 × dPS3

=
(|M3|2 × (1− θs) + |M3|2 × θs

)× dPS3

= |M3|2 × (1− θs)dPS3

+ θs × (T1(θs) + T2(θs) + T3(θs)) , (4)

where |M3|2 is the exact matrix element squared, and
dPS3 denotes the exact 3-particle phase space measure.
Note that we do not consider the effect of jet-algorithms
here (they are implicit in the definition of the phase space).
The slicing of phase space is indicated by the symbol θs,
which is 0 in the hard phase space region and 1 in the soft
region. T1 is given by

T1(θs) = S|M2|2 × dPSsoft dPS2

= R(θs)|M2|2 × dPS2 , (5)

and represents the integral of the approximate matrix ele-
ment |M3|2 → S|M2|2 over the approximate phase space
dPS3 → dPSsoftdPS2. The resolution factor R(θs) is in-
dependent of the hard scattering and can be calculated
analytically for a wide range of multiparton processes [8–
10]. T2 is given by

T2(θs) =
(|M3|2 − S|M2|2

)× dPS3, (6)

and represents the integral over the exact 3-particle phase
space of the difference between the true matrix element
and the approximate matrix element. T3 is given by

T3(θs) = S|M2|2 (dPS3 − dPS2dPSsoft) , (7)

and represents the difference between the integrals of the
approximate matrix element over the true and approxi-
mate unresolved phase space. Note that T1 contains the
soft and collinear divergences needed to cancel the singu-
larities of the virtual term, while T2 and T3 are finite and
vanish as the domain of support for θs is taken to zero.

2.1 Matrix element

The matrix elements for the NLO cross section for process
(1) are not very complicated, so we can be explicit. At
lowest order we have

dΓ2 =
1
3
1
2
√
s
Ne2

qe
2 (8m2 + 4s

)
dPS2

=
1
3
1
2
√
s

|MBorn|2 dPS2, (8)

where N is the number of colors, eq the fraction of the
elementary charge e of the heavy quark,m its mass, s = q2

and

dPS2 =
1

(2π)2
d3p1

2E1

d3p2

2E2
δ(4)(q − p1 − p2). (9)

Note that in NLO approximation |M2|2 in (5) is |MBorn|2.
AtO(αs) there are virtual and real emission contributions.
The PSS method separates the latter into hard and soft
contributions. The (spin- and color-summed) matrix ele-
ment for the real emission process (2) is

|M3|2 = 16e2
qe

2g2
sNCF IR, (10)

with gs the strong coupling, CF = (N2 − 1)/2N and

IR = −m2s23

s2
13

− m2s12

s2
13

− 4m
4

s2
13
+
4m2s12

s13s23
+

s2
12

s13s23

+
s23

2s13
+

s12

s13
− m2

s13
− m2s13

s2
23

+
s13

2s23
− m2s12

s2
23

− 4m4

s2
23
+

s12

s23
− m2

s23
. (11)

In the T1 term (5) the eikonal approximation of the exact
matrix element is used. The integral over dPSsoft is then
performed analytically and added to the virtual correc-
tions. The approximated matrix element in the soft region
(5) is

S |M2|2 = 16e2
qe

2g2
sNCF IS , (12)

where

IS = −m2s12

s2
13

+
4m2s12

s13s23
− m2s12

s2
23

− 4m
4

s2
13

− 4m
4

s2
23
+

s2
12

s13s23
.

(13)
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Note that the difference of (11) and (13) which enters the
T2 term (6), is finite in the limit s13, s23 → 0.
The result of integrating (12) over dPSsoft is given in

[10], and when added to the virtual contributions, gives
the following finite expression for the 2-particle O(αs) dif-
ferential cross section for process (1)

dΓ2 =
1
3
1
2
√
s

(
|M|2soft + |M|2virt

)
dPS2, (14)

with

|M|2soft =
αsCF

π
(15)

×
[
1
ε

(
1 +

(
1− 2m

2

s

)
lnx
β

)]
Cε |MBorn|2

+
αsCF

π

[
−2
(
1 +

(
1− 2m

2

s

)
lnx
β

)

×
(
lnx − ln

(
s

smin

)
− lnβ

)
− 2 (ln (1− x) + ln (1 + x)− lnx) + 1
− lnx

β

(
1− 2m

2

s

)(
1 + 2 ln

(1− x) (1 + x)
x

)

+
1
2β

(
1− 2m

2

s

)(
Li2

(
1− 1

x2

)
− Li2

(
1− x2))

− β +
m2

sβ
lnx

(
1− x2

x
+

s

m2

(
1− 2m

2

s

)
lnx
)

+
ln2 x

2β

(
1− 2m

2

s

)
.

]
|MBorn|2

+
αsCF

π
Ne2

qe
2
[(
1 +

(
1− 2m

2

s

)
lnx
β

)
(−4s)

]

and

|M|2virt = −αsCF

π

×
[
1
ε

(
1 +

(
1− 2m

2

s

)
lnx
β

)]
Cε |MBorn|2

+
αsCF

π
Ne2

qe
2

×
[

− 4s − 16m2 − m4

sβ
(32Li2 (x) + 64ζ2)

+
s

β
(8Li2 (x) + 16ζ2) +

1
β
ln2 (x)

(
8
m4

s
− 2s

)
− β lnx

(
6s+ 8m2)

+
lnx
β

(
− 32m

4

s
ln (1− x) + 8s ln (1− x)

+ 4s − 8m2

)]
. (16)

Here Cε = (4πµ2/m2)ε/Γ (1− ε), β = (1− 4m2/s)1/2 and
x = (1− β)/(1 + β). We have written the divergent con-
tributions explicitly, even though they cancel between the

soft and virtual contribution, so that the method inde-
pendent (virtual) and method dependent (soft) terms can
be easily read off. In particular we can obtain the results
within the dipole method by replacing the soft contribu-
tion with the integrated dipole terms. Note the logarith-
mic dependence on the slicing parameter smin in the finite
soft contribution.

2.2 Phase space

The spin-summed squared matrix elements of the previ-
ous section are functions of the final state momenta only
via the invariants s12, s13, s23. The exact 3-particle phase
space

dPS3 =
1

(2π)5
d3p1

2E1

d3p2

2E2

d3p3

2E3
δ(4)(q − p1 − p2 − p3) (17)

may be parametrized in terms of these invariants (after
integrating over all remaining variables)

dPS3 =
1
4s

1
32π3 ds12ds13ds23

× δ(s − s12 − s13 − s23 − 2m2). (18)

The integration limits of s23 at fixed s13 are

s±
23 =

1
2 (s13 +m2)

(
− s13

(
s13 − s+ 2m2)

± s13

√
s2
13 − 2s13s − 4sm2 + s2

)
. (19)

The limits of s13 at fixed s23 are found by exchang-
ing the indices 13 and 23. Setting s+

23 = s−
23 we find the

maxima of these two invariants

smax
13 = smax

23 = s − 2m√
s. (20)

In the soft (eikonal) approximation, the limits for s23 sim-
plify to

s±,eik
23 =

1
2m2

(
−s13

(
2m2 − s

)± s13

√
s2 − 4sm2

)
= s13

(
s − 2m2

2m2 ± s

2m2 β

)
. (21)

The phase space boundaries for the exact and approximate
cases are given by the Dalitz plot in Fig. 1.

2.3 Results for PSS

We now show some results for the fully inclusive cross sec-
tion, as well as some differential distributions for process
(1). We study what effect including the Ti contributions
has on the smin dependence of the results, and shall see
that including all Ti removes all smin dependence. We use
as default values s = 400GeV2, andm = 5GeV. Figure 2a
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Fig. 1. Dalitz plot for s±
23 as a function of s13 for exact (19),

solid, and eikonal (21), dashed, phase space boundaries at m =
5GeV and s = 400GeV2

shows that, for the inclusive cross section, not including
all Ti leads to smin dependence (in fact the T2 worsens the
smin dependence slightly here), but including T2 and T3
relaxes all constraints on this parameter. This, however,
comes at the expense of potentially lower numerical ac-
curacy, particularly for the differential distributions to be
considered below. The inclusion of the T3 term in particu-
lar requires a larger number of points in the Monte Carlo
integration than using T1 alone, to achieve a given accu-
racy. In practice, therefore, it is common to use only the
T1 in a PSS calculation, with an smin value small enough
for the combined T2 + T3 contribution to be negligible.
One must however be careful not to choose smin so small
that numerical inaccuracies result from the large oppo-
site sign soft + virtual and real emission contributions, as
illustrated by Fig. 2b.
Turning to distributions, we show in Fig. 3 the sin-

gle heavy quark transverse momentum and rapidity dis-
tributions at a small value of smin = 0.001GeV2, com-
puted with T1 only. We see the usual Jacobian peak near
the kinematic maximum of the pT spectrum. In Fig. 4 we
plot the smin dependence of the one-loop contributions to
dΓ/pT at two fixed values of pT, one halfway and the other
close to the kinematic maximum. The dip in the curves is
an artifact which arises because at that smin and for the
pT given, it is no longer kinematically possible for the full
phase space in Fig. 1 to contribute. Note that the dip dis-
appears for the exact T1+T2+T3 case. Similar results are
shown for the heavy quark rapidity distributions in Fig. 5
(where we show only the positive-rapidity part of the dis-
tribution). These figures show that the freedom to choose
smin when including all Ti persists for distributions.

3 Dipole subtraction

In the dipole formalism one subtracts a suitable term from
the real emission part and adds it again to the virtual cor-

rection after having performed one phase space integra-
tion. The subtraction term consists of a sum of dipoles,
each of which can be viewed as an emitter–spectator–
antenna radiating a third particle. In the case at hand,
there are only two dipoles. In one of these the heavy quark
constitutes the emitter with the antiquark being the spec-
tator. The second dipole has the roles of the quark and an-
tiquark exchanged. The matrix element to be subtracted
from the real emission part reads

|MA|2 = 2CF g2
s |MBorn|2 1

r0r
√
(1− r)(1− r0r)

×
{
1
s13

[
2(1− r0r)− (1− r0)− 1− r0

1− u0u

]

+
1
s23

[
2(1− r0r)− (1− r0)− 1− r0

1 + u0u

]}
. (22)

Here

r0 = β2, r =
s13 + s23

s − 4m2 , u0 =

√
r0(1− r)
1− r0r

,

u = − 1
u0

s13 − s23

s13 + s23
. (23)

This contribution is then integrated over the dipole phase
space and added to the virtual corrections. The integrated
version reads:∫

dPSdipole |MA|2

= CF
g2

s

4π2

1
Γ (1− ε)

(
4πµ2

s

)ε

|MBorn|2

×
{
1
ε

(
1− 1

2
1 + r0√

r0
ln
1 +

√
r0

1− √
r0

)

−2 ln r0 − ln2
(
1 +

√
r0

1− √
r0

)
+

1√
r0
ln
(
1 +

√
r0

1− √
r0

)

−1 + r0

2
√
r0
(Li2 (

√
r0)− Li2 (−√

r0)

+2Li2

(
1 +

√
r0

2

)
− 2Li2

(
1− √

r0

2

)

+Li2

(√
r0 − 1
2
√
r0

)
− Li2

(√
r0 − 1√
r0

)

+Li2

(
1

1 +
√
r0

)
− Li2

(
1− √

r0

1 +
√
r0

)

−2 ln r0 ln
(
1 +

√
r0

1− √
r0

)
+ ln 2 ln

√
r0

1 +
√
r0

+
1
2
ln2 2 + ln(1− √

r0) ln
(
1 +

√
r0√

r0

)

+
1
2
ln2(1 +

√
r0)− 12 ln

2(1− √
r0)
)}

+O(ε). (24)

The poles in ε cancel against those of the virtual correc-
tions.
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Fig. 2. a The smin/m2 dependence of the one-loop corrections to Γ (s, m2), when including the T1 (dotted), T1 + T2 (dashed),
and T1 + T2 + T3 (solid) contributions. b The smin/m2 dependence of the one-loop corrections to Γ (s, m2) for the soft + virtual
(spaced dotted) and the real emission (spaced dashed) final state contributions as well as their sum (solid) in the T1 + T2 + T3

approximation
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Fig. 3a,b. Differential decay widths at Born (dotted-dashed) and NLO (solid) levels, with parameters s = 400GeV2, m =
5GeV, and smin = 0.001GeV2 for differential variables; (a) transverse momentum dΓ/dpT, (b) rapidity dΓ/dy [GeV]
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Fig. 4. a The smin dependence of the one-loop contributions to dΓ/pT for pT = 5GeV. We plot the results including the T1

(dotted), T1 + T2 (dashed) and T1 + T2 + T3 (individual points with error bars) terms. b The smin dependence of the one-loop
contributions to dΓ/pT for pT = 8GeV. Labels as in a
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Fig. 5. a The smin dependence of the one-loop contributions to dΓ/dy at y = 0.3. Labels as in Fig. 4. b The smin dependence
of the one-loop contributions to dΓ/dy at y = 0.6. Labels as in Fig. 4

We do not show separate results for the dipole method,
which is exact and independent of any theoretical cut-
off parameter. Numerical results for the dipole method in
comparison to the PSS method can be found in the next
section.

4 Comparisons of PSS and dipole subtraction

In this section we perform some numerical comparisons
between the two methods for the process at hand. We
use as phase space measure the expression (18). The in-
tegrations over its variables are performed using the well-
known Monte Carlo iterative integration routine VEGAS
[20]. We note that we found similar results when we used
(17), generating the 4-vectors via a cascade algorithm.
This required using more random number points in order
to achieve the same accuracy.
The PSS method is relatively easy to implement, with

little analytical calculation, at the expense of requiring
cancellations between large numbers (for small smin) or
having multiple negative contributions (for large smin
when including T1, T2 and T3). Since the dipole method
requires more analytical preparation work to be imple-
mented, we expect it to show better numerical integration
in the Monte Carlo program. We will see that this expec-
tation is borne out by our results.
Our first comparison addresses the relative accuracy

achieved in the computation of the inclusive cross section
as a function of the number of points, for 20 iterations,
of which we use the first five to set the VEGAS grid [20],
leaving a sample of N = 15 results. For each method, we
perform separate runs for the O(αs) 2-particle and O(αs)
3-particle contributions, and combine them for each iter-
ation, leading to 15 results ri. The mean result r and its
error δr are then computed as

r =
1
N

N∑
i=1

ri, δr =

√
1
N

∑N
i=1 (ri − r)2

N − 1 . (25)

Table 1. Accuracy δr/r of the inclusive cross section attained
for a given number of points per iteration in the two meth-
ods. The same phase space and random number generators are
employed. The PSS results use the T1 contribution only, with
smin = 0.001GeV2

s = 400GeV2

points DIP PSS
1000 0.04% 1%
10000 0.009% 0.3%
100000 0.003% 0.1%

Table 2. Comparison of the two methods as to the approxi-
mate relative deviations of their first three (grid-setting) iter-
ations from the final mean (computed starting from the fifth
iteration), for the case of the inclusive cross section. The same
phase space and random number generators are employed, at
s = 400GeV2. The PSS results use the T1 contribution only,
with smin = 0.001GeV2

iteration DIP PSS

1 0.1% 100%
2 0.09% 70%
3 0.06% 10%

The results for this comparison are given in Table 1. We
note that the PSS method suffers further penalties in ac-
curacy and efficiency if the value of smin is chosen so large
that the T2 and T3 become necessary; in particular the
T3 contribution requires generating the soft phase space
measure, and involves the difference of two phase space
measures which are very similar in magnitude for small
values of the soft invariants, cf. (7).
Our second comparison addresses the efficiency in the

computation of the inclusive cross section as a function of
the number of iterations, for 104 random number points.
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Fig. 6a,b. Differential decay widths at NLO level, with parameters s = 400GeV2, m = 5GeV, for the phase space slicing
method (at smin = 0.001GeV2) for differential variables; a transverse momentum dΓ/dpT, b rapidity dΓ/dy [GeV]
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Fig. 7a,b. Differential decay widths at NLO level, with parameters s = 400GeV2, m = 5GeV, for the dipole method for
differential variables; a transverse momentum dΓ/dpT, b rapidity dΓ/dy [GeV]

We see that the dipole method reaches a given accuracy
with less iterations.

Next we compare the efficiency of these methods to
compute transverse momentum and rapidity distributions.
As before, the first 5 of 20 iterations are used solely for
grid-setting, with 104 points per iteration. The values and
their errors for each bin are computed according to (25).
We see that the dipole methods produces somewhat
smaller errors, with slightly less bin to bin variations.
When we increased the number of points, we saw that
both methods perform not too differently. We also noticed
that this loss of superiority is progressive with the number
of bins. This suggests that parts of the positive and neg-
ative contributions end up in different bins. To test this
idea, we performed a simple smearing where each event
with weight w that would normally end up in bin i is dis-
tributed in bins i − 1, i, i + 1, each with weight w/3. We
found that this smearing indeed reduced the errors some-
what, but in about equal measure for both methods.

Finally, we compared the accuracies of the methods in
the large s limit for the inclusive cross section, where the
heavy quarks become effectively massless. For the PSS
method we investigated how to choose smin in order to

minimize the calculation error. We found that smin is best
chosen not too small (which would lead to large numerical
cancellations), and as a fraction of s between 0.01 and 0.1.
For large smin this may require the inclusion of the T2 and
T3 terms, which contribute about 10% to the cross section
for smin = 0.1s at s = 250000GeV2. For s = 250000GeV2

and smin = 0.01s their contribution is only 2%, with a
slightly larger total error for the same number of points.
We found similar results keeping s fixed and letting m
become smaller. For the dipole method we found that it
has consistently better accuracy than the PSS method in
these limits. In general in the high-energy limit, both these
methods lead to cancellations between contributions with
+ ln(s/m2) and − ln(s/m2) terms, which is not advanta-
geous numerically. Therefore a method which avoids such
logarithms could be desirable [18].

5 Conclusions

In this paper we have compared the accuracy and effi-
ciency of two general-purpose methods to compute NLO
heavy quark production cross sections, for a very simple
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case. We found the dipole method [12,13], while involving
additional analytical work, to be superior in efficiency and
accuracy. A similar conclusion was reached by Dittmaier
[14] who compared his method with a slicing calculation
for a number of electroweak cross sections.
The phase space slicing method [8–10], which is easy

to use and minimizes analytical work, can be extended
[19] to become fully independent of the slicing parameter,
which we demonstrated in this paper for the reaction at
hand. Although our case study involves only the simplest
of heavy quark production processes, it is, we believe a
useful first step toward gaining numerical experience with
general methods for constructing NLO Monte Carlo pro-
grams for heavy quark production. Moreover, such expe-
rience gained at NLO is likely to be very valuable when
these methods are generalized for NNLO cross sections.
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Appendix A:
A subtlety in phase space slicing

In this appendix we mention a subtlety in implement-
ing PSS, which is well known to experts in the field, but
not readily found in the literature. It does not come into
play for our simple case study, but does for amplitudes in
which more than one color structure is present. The cor-
rect implementation of phase space slicing requires that
the real emission amplitude be decomposed into pieces
with a unique singularity structure and that the slicing
procedure be defined for each piece separately.
We discuss the point for a simplified example, where

we take al particles to be massless. We assume that the
real emission amplitude is given by

|M4|2 = 1
s13s34s24

+
1

s14s34s23
. (A.26)

This simple example has the singularity structure for the
leading-color part of the γ∗ → qq̄gg amplitude. The cor-
rect way to implement phase space slicing treats each sin-
gularity structure separately and the resolved contribution
from the real emission amplitude reads therefore∫

dPS4
1

s13s34s24
θ (s13 − smin) θ (s34 − smin)

×θ (s24 − smin)

+
∫
dPS4

1
s14s34s23

θ (s14 − smin) θ (s34 − smin)

×θ (s23 − smin) . (A.27)

The incorrect method cuts out all possible singularities
from the amplitude and uses the expression

∫
dPS4

(
1

s13s34s24
+

1
s14s34s23

)
θ (s13 − smin)

×θ (s34 − smin) θ (s24 − smin)
×θ (s14 − smin) θ (s23 − smin) (A.28)

for the resolved contribution. The difference between the
correct implementation and the incorrect one consists of
terms of the form∫

dPS4
1

s13s34s24
θ (s13 − smin)

×θ (s34 − smin) θ (s24 − smin)
×θ (smin − s14) θ (s23 − s14) , (A.29)

together with three similar terms, obtained by exchanging
3 ↔ 4 in the matrix element and the slicing procedure.
Contrary to naive expectations, these terms do not vanish
in the limit smin → 0, but give a constant contribution.
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